

Quantum tensor networks on a trapped-ion QCCD quantum computer

Michael Foss-Feig Quantinuum

Quantinuum's H1 series quantum computers

QCCD approach [2], pioneered at NIST [1]

- Stand. Technol. 103, 259 (1998)
- [2] Pino, J.M., Dreiling, J.M., Figgatt, C. et al. Demonstration of the trapped-ion quantum CCD computer architecture. Nature 592, 209–213 (2021).

[1] Wineland, D.J., Monroe, C., Itano, W.M., Leibried, D., King, B.E., Meekhof, D.M., Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions, J. Res. Natl. Inst.

Quantinuum's H1 series quantum computers

Despite 1D architecture, qubits can be arbitrarily rearranged/paired via physical swaps, shifts, and mergers

Two-qubit (Molmer-Sorensen) gate

Low-crosstalk MCMR key to this work, and also recent demonstration of real-time QEC (C. Ryan-Anderson et al., arxiv:2107.07505)

Quantinuum's H1 series quantum computers

SQ fidelity: $(8.4 \pm 3.3) \times 10^{-5}$

SPAM fidelity: $(2.4 \pm 2.0) \times 10^{-3}$

TQ fidelity: $(2.6 \pm 0.4) \times 10^{-3}$

Example: MPS as a quantum circuit

What have we gained? A nice circuit ansatz for generating some physically relevant state, but something else too...

Example: MPS as a quantum circuit

Example: MPS as a quantum circuit

Example: MPS as a quantum circuit

Before we need this one

Now this qubit can be measured...

QUANTINUUM

Example: MPS as a quantum circuit

Example: MPS as a quantum circuit

Now this qubit can be measured...

QUANTINUUM

Example: MPS as a quantum circuit

Example: MPS as a quantum circuit

© 2022 by Quantinuum. All Rights Reserved.

Example: MPS as a quantum circuit

Summary of all that:

 $|\Psi\rangle$

We started with some complicated state involving lots of qubits, that for physical reasons had low entanglement entropy and therefore could be expressed as a (low-bond-dimension) MPS

Example: MPS as a quantum circuit

One qubit to represent the degrees of freedom of an infinite lattice: Measurements at a given time correspond to properties of the system at a given point in space.

Example: MPS as a quantum circuit

The qubit resources are pushed into a "bond" register (MPS language), with $n_{\rm b} \sim \log \chi \sim S$ (qubit resources set by entanglement, not system size!)

One qubit to represent the degrees of freedom of an infinite lattice: Measurements at a given time correspond to properties of the system at a given point in space.

QUANTINUUM

Algorithm for simulating quantum quenches If we actually want to have the output state "in hand" (for example if we want to do

generic quantum post-processing on it), then we just have to build the whole thing.

© 2022 by Quantinuum. All Rights Reserved.

But in general we actually are satisfied with much less, for example, making arbitrary local measurements:

How many qubits do we actually need in order to make these measurements?

QUANTINUUM

How many qubits do we actually need in order to make these measurements?

© 2022 by Quantinuum. All Rights Reserved.

How many qubits do we actually need in order to make these measurements?

© 2022 by Quantinuum. All Rights Reserved.

How many qubits do we actually need in order to make these measurements?

© 2022 by Quantinuum. All Rights Reserved.

How many qubits do we actually need in order to make these measurements?

© 2022 by Quantinuum. All Rights Reserved.

Correlations in the initial state seem to spoil any economization

© 2022 by Quantinuum. All Rights Reserved.

Measure, reset, and reuse

© 2022 by Quantinuum. All Rights Reserved.

Looks a little different but this is exactly the "quantum MPS" circuit we looked at before:

© 2022 by Quantinuum. All Rights Reserved.

Looks a little different but this is exactly the "quantum MPS" circuit we looked at before:

© 2022 by Quantinuum. All Rights Reserved.

Measure, reset, and reuse

© 2022 by Quantinuum. All Rights Reserved.

How many qubits do we actually need in order to make these measurements?

© 2022 by Quantinuum. All Rights Reserved.

How many qubits do we actually need in order to make these measurements?

© 2022 by Quantinuum. All Rights Reserved.

Kicked Ising model as a benchmark

"kicked" Ising spins

© 2022 by Quantinuum. All Rights Reserved.

Data from H1-1 (uses up to 15 qubits)

- Dual unitary point \rightarrow benchmark for the holoQUADS method.
- More qubits = longer times.
- Times accessible with 15 qubits agree well with theory.
- See E. Chertkov et al. for details arXiv:2105.09324, and \bullet simulations away from exactly-solvable DU point.

Ongoing/Future work: Algorithms

Hierarchical tensor networks:

- ulletimplementations given gate errors / runtime limitations.
- Potentially a good route to 2D simulations •

What is the best hardware compatible ansatz in 2D?

- Sequential MPS?
- Isometric tensor networks? \bullet
- Plaquette-PEPS? \bullet

Continuous time evolution

- any direct analogue to this on a quantum computer?
- Other variational approaches to reduce circuit depths for continuous-time evolution? \bullet

TTN and MERA implementations are straightforward, though plenty of work to be done to understand best

SVD/compression in TEBD is gives a constant-factor (but huge) reduction in classical complexity, is there

QUANTINUUM ACCELERATING QUANTUM COMPUTING

Reach out to learn more:

www.Quantinuum.com

©2022 by Quantinuum. All Rights Reserved.

PROVIDING H1 ACCESS FOR QC RESEARCH:

- Quantum Computing User Program from Oak Ridge National Laboratory
 - https://www.olcf.ornl.gov/olcf-resources/computesystems/quantum-computing-user-program/
- Azure Quantum Credits Program from Microsoft up to \$10,000 credits
 - https://aka.ms/aq/credits
 - \$500 Free Azure Quantum Credits when creating your workspace

