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Quantinuum’s H1 series quantum computers

QCCD approach [2], pioneered at NIST [1]

Clock-state qubit

[1] Wineland, D.J., Monroe, C., Itano, W.M., Leibried, D., King, B.E., Meekhof, D.M., Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic lons, J. Res. Natl. Inst.
Stand. Technol. 103, 259 (1998)
[2] Pino, J.M., Dreiling, J.M., Figgatt, C. et al. Demonstration of the trapped-ion quantum CCD computer architecture. Nature 592, 209-213 (2021).
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Quantinuum’s H1 series quantum computers

Despite 1D architecture, qubits can be arbitrarily rearranged/paired via physical swaps, shifts, and mergers

4 p
Two-qubit (Molmer-Sorensen) gate |solate Single-qubit, measure, reset

Low-crosstalk MCMR key to this work, and also recent demonstration of real-time QEC (C. Ryan- Anderson et al., arxiv:2107.07505)
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Quantinuum’s H1 series quantum computers
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Quantinuum’s H1 series quantum computers
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Quantum tensor networks with MCMR

Example: MPS as a quantum circuit

------
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What have we gained? A nice circuit ansatz for generating some physically relevant state, but something else too...
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Quantum tensor networks with MCMR

Example: MPS as a quantum circuit

------
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Quantum tensor networks with MCMR

Example: MPS as a quantum circuit
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Before we need this qubit
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Quantum tensor networks with MCMR

Example: MPS as a quantum circuit
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Quantum tensor networks with MCMR

Example: MPS as a quantum circuit
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Quantum tensor networks with MCMR

Example: MPS as a quantum circuit

------
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Quantum tensor networks with MCMR

Example: MPS as a quantum circuit

------
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Quantum tensor networks with MCMR

Example: MPS as a quantum circuit

------
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Quantum tensor networks with MCMR

Example: MPS as a quantum circuit

------
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Quantum tensor networks with MCMR

Example: MPS as a quantum circuit

Summary of all that:

DX EX XX XX E

We started with some complicated state involving
lots of qubits, that for physical reasons had low
entanglement entropy and therefore could be
expressed as a (low-bond-dimension) MPS

© 2022 by Quantinuum. All Rights Reserved. QUANTINUUM



Quantum tensor networks with MCMR

Example: MPS as a quantum circuit

One qubit to represent the degrees of freedom of an infinite lattice: Measurements at
a given time correspond to properties of the system at a given point in space.
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Quantum tensor networks with MCMR

Example: MPS as a quantum circuit

The qubit resources are pushed into a “bond” register (MPS language), with
n, ~ log y ~ S (qubit resources set by entanglement, not system size!)

One qubit to represent the degrees of freedom of an infinite lattice: Measurements at
a given time correspond to properties of the system at a given point in space.
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Algorithm for simulating quantum quenches

Initially correlated state:

5588888
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Algorithm for simulating quantum quenches

e —1 fé dtH(7) _
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Algorithm for simulating quantum quenches

If we actually want to have the output state “in hand” (for example if we want to do
generic quantum post-processing on it), then we just have to build the whole thing.

e —1 fé dtH(7) ~

© 2022 by Quantinuum. All Rights Reserved. QUANTINUUM



Algorithm for simulating quantum quenches

But in general we actually are satisfied with much less, for example, making arbitrary
local measurements:

2 = B B B B e i

functions:

| | | | | | | | S ONO),
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Algorithm for simulating quantum quenches

How many qubits do we actually need in order to make these measurements?

A S R
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Algorithm for simulating quantum quenches

How many qubits do we actually need in order to make these measurements?
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Algorithm for simulating quantum quenches

How many qubits do we actually need in order to make these measurements?
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Algorithm for simulating quantum quenches

How many qubits do we actually need in order to make these measurements?
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Algorithm for simulating quantum quenches

How many qubits do we actually need in order to make these measurements?

A LA

N=6"?
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Algorithm for simulating quantum quenches

Correlations in the initial state seem to spoil any economization
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Algorithm for simulating quantum quenches

Measure, reset, and reuse

A LA
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Algorithm for simulating quantum quenches

Looks a little different but this is exactly the “quantum MPS” circuit we looked at before:

|0
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Algorithm for simulating quantum quenches

Looks a little different but this is exactly the “quantum MPS” circuit we looked at before:
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Algorithm for simulating quantum quenches

Measure, reset, and reuse

A LA
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Algorithm for simulating quantum quenches
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Algorithm for simulating quantum quenches
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Algorithm for simulating quantum quenches

How many qubits do we actually need in order to make these measurements?

A LA
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Algorithm for simulating quantum quenches

How many qubits do we actually need in order to make these measurements?

A Rl R R =R
4 )

In general, can simulate time-evolution of an infinitely large state with only:

N ~ SO + 4
qubits. Note that given (typical) ballistic growth of entanglement:

S(1) ~ Sy + 1,

every qubit is being put toward the classically hard part of simulation:
Entanglement

[0) 10y 10y [0) 10

© 2022 by Quantinuum. All Rights Reserved. QUANTINUUM



Kicked Ising model as a benchmark

Hamiltonian dynamics of Circuit dynamics of qubits
“kicked” Ising spins

Ising+ ield: Agh M.,g 2
kick: y’q.ovq ... 8

Ising-+field: ‘h M 4 converts to >
kick y’o‘.ovq .8 U

t

e vy  ARRA.. P L N

correlated state

H(f) = Z (%Gizaiz—i-l + ho? +% Z 5(t — n)o™) Exactly what we can simulate with quantum

e tensor networks

v+0- chaotic SDKI modelis an example of a dual-unitary circuit
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Data from H1-1 (uses up to 15 qubits)

| |

« Dual unitary point — benchmark for the holoQUADS method.

» More qubits = longer times. B i -= =
—\_/r_‘\i_(‘:"’—'—‘—rj—'—‘—'—l—'—'—l—t—‘—‘—.—n—l—r‘—r—t—
* Times accessible with 15 qubits agree well with theory. W
» See E. Chertkov et al. for details arXiv:2105.09324, and T 5 9 3 17 21 25 2
simulations away from exactly-solvable DU point. r
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Ongoing/Future work: Algorithms

Hierarchical tensor networks:

- TTN and MERA implementations are straightforward, though plenty of work to be done to understand best
implementations given gate errors / runtime limitations.
» Potentially a good route to 2D simulations

What is the best hardware compatible ansatz in 2D"

- Sequential MPS?
* |sometric tensor networks?
- Plaguette-PEPS?

Continuous time evolution

- SVD/compression in TEBD is gives a constant-factor (but huge) reduction in classical complexity, is there
any direct analogue to this on a quantum computer?
« Other variational approaches to reduce circuit depths for continuous-time evolution?
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Reach out to learn more:

www.Quantinuum.com
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